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Abstract Geometry optimization using the elongation

method is developed at the Hartree–Fock level of theory.

The formalism of elongation energy gradient and its

accuracy have been validated by model systems calcula-

tions. The linear poly-hydrogen fluoride, polyethylene,

planar polyacetylene and extended polyalanine are opti-

mized using different basis sets and compared with con-

ventional results. The results show that the elongation

Hartree–Fock geometry optimization (ELG-HF-OPT) can

reproduce conventional calculation results with high

accuracy for various basis sets. For the poly-hydrogen

fluoride calculation at 6-31G(d,p) basis set, moreover,

ELG-HF-OPT gives a structure with lower ground state

energy than conventional results with the same optimiza-

tion convergence threshold. This means the potential pos-

sibility of ELG-HF-OPT can locate a more stable structure

than conventional calculations with the same optimization

convergence criteria. Therefore, the ELG-HF-OPT would

provide one more choice for performing optimization on

complicated large systems.

Keywords Geometry optimization � Elongation method �
Cutoff technique � Large system

1 Introduction

An accurate description of the electronic structure of a

molecule is very important in molecular modeling by

quantum chemistry. However, it is still challenging to

calculate large systems, such as proteins and DNA, because

of their high computational costs. For instance, Hartree–

Fock (HF) [1] and density functional theory (DFT) [2]

scale in form as O(N4), the coupled cluster (CC) method

[3–6] including single and double excitations (CCSD)

scales as O(N6), where N is the number of basis functions.

To reduce this expense to a reasonable level, much con-

siderable efforts have been made to linearly O(N) calculate

the Fock matrix (e.g. prescreening techniques [7], quantum

fast multiple method (QFMM) [8–10]), which is one of the

most time-consuming part of calculations [11–16]. On the

other hand, fragmentation methods based on the near-

sightedness principle [17] have been proposed and devel-

oped rapidly. To name just a few, divide and conquer

[18–21], fragment molecular orbitals [22–29], systematic

fragmentation method [30–33] and elongation method
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(ELG) [34–36]. These approaches adopt local molecular

orbitals (LMOs) of essential fragments or subunits instead

of conventional canonical molecular orbitals (CMOs) of

the whole system. In other words, these approaches project

the Roothaan–Hall equations [37] (or Kohn–Sham equa-

tions [38]) into a subspace associated with molecular

fragments instead of solving HF/KS for the whole system.

In such a way, O(N3) diagonalization problem of a huge

matrix is omitted.

The ELG method, originally proposed by Imamura et al.

in the early of 1990s, uses region localized molecular

orbitals (RLMOs) to calculate random quasi-one-dimen-

sion periodic and aperiodic systems with high accuracy at a

reasonable cost level. Currently, this method has been

successfully implemented and linked to the GAMESS

software package [39]. It has been applied to molecular

properties calculation at HF and DFT [40] levels of theory.

For example, band structure [41, 42] and nonlinear optical

properties of polymers [43–47] have been investigated

using ELG-HF or ELG-KS method. These properties

depend on the system geometry. It is important to link

geometry optimization with ELG method. In this paper, the

performance of ELG-HF method armed with geometry

optimization (ELG-HF-OPT) is described. Our efforts are

here concentrated on the formalism of ELG-HF-OPT

method and its accuracy in comparison with conventional

HF optimization scheme.

The paper is organized as follows. After a brief intro-

duction of the ELG method, a description of the ELG

geometry optimization is presented. Next, the results for

three model systems (linear poly-hydrogen fluoride, poly-

ethylene and planar polyacetylene) are given with the

special emphasize put on basis set effect [STO-3G, 6-31G

and 6-31G(d,p)]. The optimized geometrical structures of

model systems are compared to conventional HF method.

The analysis is focused on Z-matrix variables, that is, bond

lengths, bond angles and total energies. Additional test

calculations are performed for a model built from 20 units

of extended polyalanine. Finally, conclusions are given

with future prospects.

2 Elongation method

In general, ELG procedure is analogous to experimental

polymer chain synthesis as shown in Fig. 1. More detailed

descriptions are found in [36] and [48]. First, a suitable size

of initial monomers (starting cluster) is chosen to initiate

the ELG procedure. The energy of this starting cluster

is computed by conventional HF self-consistent-field

(HF-SCF) procedure; then, the CMOs of starting cluster

are transformed to an orthogonal atomic basis (OAO)

by Löwdin’s symmetric orthogonalization [49]. In the

following step, the OAO-based density matrix (DOAO) is to

partition into frozen region (A) and active region (B). The

frozen region is assumed to be far away from the chain

propagation point, while the active region is consisted of

the remaining part of the starting cluster. After that, the

transformations to the regional orbitals are obtained by

separately diagonalizing the subspaces DOAO (A) and

DOAO (B). Due to the unwanted mixing between occupied

and unoccupied orbitals, the full density matrix in regional

orbital basis is block-diagonalized by Jacobi procedure

with blocks corresponding to occupied and unoccupied

subspaces. After this localization procedure finishes, a set

of RLMOs for both A and B regions are obtained. This

ELG localization scheme has been successfully performed

on several model systems including strongly delocalized

system like cationic cyanines [36].

Then, one attacking unit (M) is added to the chain

propagation point for the next ELG step. Because the

frozen region (A) is far away from M, the exchange

interactions between them are neglected. In the subsequent

ELG single point energy calculation, only B and M will be

included in the ELG HF-SCF calculations, and the Root-

haan–Hall equations are solved only for molecular orbitals

(MOs) of B and M regions.

After the ELG HF-SCF converges, the CMOs of B and

M regions will be localized again to form a new frozen

region (RLMOs A0) and a new active region (RLMOs B0).
Then, a new attacking unit (M0) is added to repeat the

above procedures until the desired length is reached.

Fig. 1 The flowchart of the elongation method, CMO and RLMO

correspond to the canonical molecular orbital and regional localized

molecular orbital, respectively. After the elongation localization

procedure, CMOs of staring cluster will be localized to RLMO A

(frozen part) and RLMO B (active part). The elongation HF equations

will be solved at local molecular orbital basis
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The important feature of the ELG method is that the HF/

KS equations are solved only for small subunits instead of

the whole system. If the same size of unit (M) is added

each time, the corresponding HF equations will be solved

with the same dimension. Meanwhile, if the distance (or

interaction) between A and M is less than threshold, the

calculations of two-electron repulsion integrals (ERIs) will

be partly omitted by cutoff technique [48, 50–52]. It is

proved by the large model system calculations that the

ELG method can evaluate the total electronic energy of

system linearly (or sublinearly) while maintaining a high

accuracy.

3 Elongation geometry optimization

In the framework of HF calculation, the first derivative

(gradient) of total energy (E) with respect to the nuclear

coordinate XA at atomic orbitals basis can be written as

follows[1]:

oE

oXA

¼
X

lm

Dml
oHcore

lm

oXA

þ 1

2

X

lmkr

DmlDkr
oðlmjjrkÞ

oXA

þ oVNN

oXA

�
X

lm

Qml
oSlm

oXA

ð1Þ

where (lm||rk) denotes two-electron integral, D is the

density matrix, Hcore and S correspond to the core

Hamiltonian and overlap matrices of system, respectively.

The nuclear–nuclear repulsion is defined by Vnn. The

energy-weighted density matrix Q of conventional method

is defined as follows:

Qml ¼
XN=2

i

nieiCliCmi ð2Þ

where n is the matrix of occupancy number (density matrix

in MO representation).

In the ELG method, the HF equations are solved only

for active subspaces defined by B and M fragments. After

the ELG SCF procedure has converged, all matrices and

the molecular orbitals will be transferred back to atomic

orbital basis for the gradient calculated by Eq. (1). Com-

paring with the conventional method, only the last term in

Eq. (1) has changed. The eigenvalue matrix eABM (subscript

ABM means the whole system) in Eq. (2) is no longer a

diagonal matrix. The non-diagonal eij, employed in the

ELG-HF-OPT method, is obtained by CMOy
li FMO

lm CMO
mj and

based on the orthonormal overlap in the mixed basis. The

coefficients of the whole system CMO
ABM consist of CLMO

A

(coefficients of frozen part, localized by the ELG

localization procedure) and CMO
BM (coefficients of active

region and attacking unit, transformed from CMO0

BM after the

ELG SCF calculation). Finally, the energy-weighted den-

sity matrix Q of the ELG-HF-OPT method in atomic basis

can be rewritten as follows:

Qml ¼
XN=2

ij

nieijCliCmj ð3Þ

The ELG-HF-OPT procedure goes as it is described

below. The starting cluster is initially optimized using

conventional optimization algorithm. After the equilibrium

geometry of starting cluster is reached, the electronic

orbitals are localized by the ELG localization procedure.

Then, an attacking unit is attached. Now, the structure is

divided into A, B and M regions. A region is frozen, that is,

both electronic orbitals and atomic coordinates are not

changed any more. The geometry of remaining BM region

is optimized with the ELG-HF-OPT algorithm. Because of

the boundary effects between A and BM arisen by the tails

after the ELG localization procedure, the coordinates of the

one unit of the BM region, which is the closest to the

frozen region, are fixed in the gradient calculation to

reduce these effects [53–55].

4 Computational details

Both elongation and conventional geometry optimizations

were performed by the default geometry optimizer imple-

mented in the GAMESS program package. The optimiza-

tion convergence threshold is set to be 1 9 10-4 Hartree/

Bohr, which means the maximum gradient with respect to

coordinate should be less than 1 9 10-4 Hartree/Bohr, and

the root mean square gradient (RMSD) should be smaller

than 1/3 9 10-4 Hartree/Bohr. To illustrate potential uses

for elongation geometry optimization, three different types

of model systems are chosen. Linear poly-hydrogen fluo-

ride is a model system for non-bonded systems, polyeth-

ylene is employed as example of bonding systems, and

planar polyacetylene is treated as a system with strongly

delocalized p-electrons. STO-3G, 6-31G and 6-31G(d,p)

basis sets are used. For the purpose of this paper which is to

valid the formalism of ELG-HF-OPT method and its

accuracy, the cutoff threshold is restricted to a very low

value (the value of overlap between A and M should be less

than 1.0 9 10-5, and the coupling between frozen (A) and

active units (B), Xn =
P

lm2B

P
ij2A CliSijCjv

�� ��, should be

less than 1.0 9 10-9) [50]. Finally, a model with 20 units

of extended polyalanine is optimized as an example of the

application of developed approach to a complicated bio-

system using 6-31G basis set. The initial cluster size is
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chosen systematically. In the ELG-HF-OPT, one unit, the

closest to the frozen region, will be fixed in the gradient

calculation because of the coupling between frozen region

and active region. Then, the size of the starting cluster

should be greater than 3 units. In general, larger starting

clusters give higher accuracy in elongation calculations. If

the size of starting unit is chosen to be small, the program

can automatically increase the initial cluster size until the

interaction between frozen units and the terminal is less

than a given value. The model system of polyethylene and

polyacetylene starts from 4 units: one unit is frozen region

and the other 3 units are active region. Consider the

potential hydrogen bond between units, poly-(HF)s and the

polyalanine system starts with 5 units. These sizes of initial

cluster should guarantee the frozen region far away from

the terminal. The unit size is chosen by trial and error.

Smaller unit size will make the SCF solved in a lower

dimension but with more elongation steps. Too many

elongation steps may offset the time savings in the reduced

size of the SCF calculation. In this work, the unit size is not

optimized by trial and error; we just simply choose the

number of atoms in each unit is about 20 based on previous

experience.

5 Result and discussion

5.1 Non-bonding model system: (HF)n=48

The linear poly-hydrogen fluoride (poly-HF) molecules are

optimized by both elongation and conventional restricted

Hartree–Fork method (RHF) with different basis sets. The

initial geometry is arranged from head to tail (H–F…H–

F…H–F…H–F…), and the initial structure parameters are

set as a kind of random structure, RH–F = 0.90 ± 0.20 Å,

RH…F = 1.50 ± 0.20 Å. Details of the initial bond lengths

for the first 4 molecules are shown in Fig. 2a. For the

elongation geometry optimization, the starting cluster

contains 30 HF molecules with 6 (one unit) in frozen

region (A) and the other 24 (4 units) in active region (B).

The large B region will guarantee that the interaction

between frozen region(s) and attacking monomer is negli-

gible in the next elongation steps. After a total of 4 steps of

optimization, the equilibrium structure by the elongation

geometry optimization is achieved. The bond lengths of

intra-molecules (RH–F) and inter-molecules (RF…H) for

STO-3G, 6-31G, and 6-31G(d,p) basis sets are listed in

Supplementary Material Table 1, and the differences of the

bond lengths (DRH–F and DRH…F, DR = Relongation -

Rconventional) are shown in Supplementary Material Fig. 2(b, c).

It shows that from STO-3G to 6-31G(d,p) basis set, the

optimized bond lengths (RH–F) of intra-molecules decrease,

while those of inter-molecules increase. The maximum

differences of intra-molecular bond lengths are 7.4 9

10-4 Å for STO-3G, 1.2 9 10-4 Å for 6-31G and -1.4 9

10-3 Å for 6-31G(d,p), while the maximum differences of

inter-molecular bond lengths are -6.4 9 10-3 Å,

1.5 9 10-3 Å and 6.8 9 10-2 Å for STO-3G and 6-31G

and 6-31G(d,p) basis sets, respectively. It also shows that

the 6-31G basis set gives the best agreement to the corre-

sponding conventional result. However, The energy dif-

ferences DE (DE = Eelongation - Econventional) of STO-3G,

6-31G and 6-31G(d,p) basis sets are -4.49 9 10-7,

9.09 9 10-9 and -3.26 9 10-5 Hartree/atom, respec-

tively. As we see that the total energy difference of

6-31G(d,p) is lower than corresponding conventional one.

This means the ELG-OPT locates an even lower ground

state than conventional results when the same convergence

criteria are employed. Based on the structure optimized by

the ELG-HF-OPT at 6-31G(d,p) basis set, a conventional

single point energy calculation is performed. This total energy

difference between ELG-HF-OPT energy and conventional

SCF single point calculated (Eelongation - Econventional) is

5.41 9 10-11 Hartree/atom. For a flat energy potential

surface of linear poly-HF molecules, ELG-HF-OPT may

produce a more promising candidate for the most stable

geometry.

The most time-consuming step of optimization is mul-

tiple times SCF calculations. As described above, the ELG

will solve the SCF equation efficiently with small dimen-

sion. If the cutoff is activated, meanwhile, it means if three

or four indexes of ERIs belong to cutoff unit(s), the cor-

responding ERIs will automatically be skipped to calculate.

Therefore, the time to form the whole Fock matrix will be

faster. Despite the very low cutoff threshold is chosen, after

the accumulation of elongation steps, the efficiency of

ELG-OPT (sum of all elongation steps about 120.2 min) is

little faster (about 8 %) than convention (a one-time cal-

culation for whole molecule about 131.7 min) at the

6-31G(d,p) basis set for the whole system calculation.

By analyzing differences in the total energies and bond

lengths, we see that the elongation geometry optimization

method produces an optimum structure similar to the

structure obtained from conventional Hartree–Fock calcu-

lations. It should be mentioned that the maximum errors of

bond distances of a sets of model molecules of Hartree–

Fock method by cc-pVQZ relative to experiment are about

8.5 9 10-2 Å [56]. Comparing to this error, the difference

Fig. 2 a The structure parameters of the first four hydrogen fluoride

molecules. RH–F = 0.90 ± 0.20 Å, RH…F = 1.50 ± 0.20 Å
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between ELG-HF-OPT and conventional Hartree–Fock

method is negligible. For the result of 6-31G(d,p) basis set,

ELG-HF-OPT may search over more possibilities than

conventional method with the same optimization conver-

gence threshold.

5.2 Bonding system: polyethylene (C66H134)

The geometry for polyethylene chain was optimized by

ELG using a starting cluster containing 4 units with one in

frozen part, and the remaining three units in active part,

where –[CH2]8– group is one unit and added for each

elongation step, except –[CH2]10–H is added for the final

step. The initial structural information is shown in Fig. 3a.

For the ELG-HF-OPT calculation, there was no symmetry

restrictions used during the optimization. In each ELG-HF-

OPT step, except final one, a hydrogen atom was used to

cap the end of the chain to make a closed-shell system.

After the equilibrium structure was reached, the terminal

atom (i.e. hydrogen atom) was removed for the next ELG-

HF-OPT step. A total of 5 ELG-HF-OPT steps were per-

formed to reach the equilibrium geometry of the whole

polyethylene chain. The differences between bond lengths

and bond angles calculated with the ELG-HF-OPT and

conventional methods are shown in Supplementary Mate-

rial Fig. 3(b–g). The maximum differences of bond length

and bond angle are 5.2 9 10-5 Å and 0.02� for STO-3G

basis set, 5.8 9 10-5 Å and 0.03� for 6-31G basis set, and

6.4 9 10-5 Å and 0.02� for 6-31G(d,p) basis set, respec-

tively. These small differences in structure predict the little

errors in the total energy. Compared to conventional results,

the differences of total energy (DE) are 2.99 9 10-9 Hartree/

atom for STO-3G basis set, 2.53 9 10-9 Hartree/atom

for 6-31G basis set and 1.78 9 10-9 Hartree/atom for

6-31G(d,p) basis set. Differences in bond length, bond angle

and the total energy indicate that the reproduction of con-

ventional HF results by ELG-HF-OPT procedure is really very

good.

Here, we are focusing on the formalism of ELG-HF-

OPT method and its accuracy; therefore, a strict threshold

is chosen for the cutoff procedure. In other words, for the

bonding system calculation, only a few unit(s) will be cutoff in

current calculations to keep the high accuracy. For instance,

only one unit is cutoff at the final step with 6-31G(d,p) basis

set. Considering the accumulation of elongation steps, the

current optimization efficiency of bonding system is not

impressed. However, the differences of bond lengths, bond

angles and the total energies indicate that the ELG-OPT can

reproduce well the conventional results.

5.3 Delocalized system: planar polyacetylene (C64H66)

Planar polyacetylene is also optimized by the ELG-HF-

OPT to test of a system with delocalized p-elections. The

initial bond lengths of double bond and single bond

between carbon and carbon are set to 1.30 and 1.45 Å,

respectively. More details about the initial geometry

parameters are listed in Fig. 4a. For the first elongation

geometry optimization step, 4 units (–[CH=CH]4– group is

one unit) are optimized; then, each time, one unit is added

for each elongation step. In a total of 5 steps, the equili-

brant structure is located. The differences of all bond

length and bond angle between the elongation results and

conventional calculations are shown in Supplementary

Material Fig. 4(b–g). The maximum differences in bond

length and bond angle between ELG-HF-OPT and con-

ventional Hartree–Fock method are 4.9 9 10-5 Å and

0.02� for STO-3G basis set, 2.6 9 10-5 Å and 0.02� for

6-31G basis, and 3.2 9 10-5 Å and 0.01� for 6-31G(d,p)

basis set. An important thing is that the differences in bond

length and bond angle are independent with basis sets. As

the basis set enlarged from STO-3G to 6-31G(d,p) basis

set, the carbon single bond lengths decrease while double

bond lengths increase, details are listed in Supplementary

Material Table 2. These bond length changes attribute to

the effect of delocalized p-orbitals. The same tendency in

carbon bond length changes between ELG-OPT and con-

ventional results indicates that although the existence of the

elongation localization procedure, the ELG-OPT can well

represent the delocalized p-orbitals.

Compared to conventional calculations, the efficiency of

current ELG-OPT of polyacetylene is not attractive. This

Fig. 3 a Initial structural parameters of polyethylene, initial bond

lengths of C–H and C–C are set to 1.2 and 1.6 Å, respectively. The

bond angle of C–C–H is set to 110�, and the dihedral of C–C–C–H is

±60� of the carbon atomic plane

Fig. 4 a The geometrical parameters of the initial structure

polyacetylene
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should attribute to two facts: the symmetry during opti-

mization and the delocalized orbitals. It is difficult to fully

localize those p-orbitals into regional localized units

because of the ‘‘tails’’ generated during the orthogonal

treatment. Due to these few but weighted component ele-

ments in tails, no cutoff is activated at current threshold

during the whole ELG-OPT. Fortunately, an ‘‘orbital shifted’’

treatment has recently been proposed and developed to deal

with these tails during the elongation localization especially

for delocalized system [47]. But this treatment for delocalized

p-orbitals is not employed in this paper.

The total energy difference between the elongation and

conventional calculations of planar polyacetylene of STO-

3G, 6-31G and 6-31G(d,p) is 1.14 9 10-9, 1.90 9 10-9

and 1.06 9 10-9 Hartree/atom, respectively. The differ-

ence of total energies and structures indicate that the ELG-

OPT will represent the conventional results.

5.4 Polyalanine

Finally, a model of 20 units of extended alanines is opti-

mized by both the ELG-HF-OPT and conventional method

using 6-31G basis set. Two alanines are one unit. The

initial geometry of the extended polyalanine is generated

by Spartan [57] with Psi (155.0�) and Phi (-157.0�). The

starting cluster consists of 5 units with one unit in the

frozen region, 4 units in active region. Due to the large

molecular size, the QFMM is employed by both conven-

tional and elongation method. The optimized geometry

difference between the ELG-HF-OPT and conventional

SCF-OPT is compared. The maximum differences in bond

length and bond angle are 3.4 9 10-4 Å and 0.18�,

respectively. The RMSD of the whole backbone (excluding

hydrogen) shown in Supplementary Material Fig. 5 is 0.18,

calculated by VMD program package [58]. The difference

of total energy between ELG-OPT and conventional result

is 2.37 9 10-7 Hartree/atom. These small differences in

structure and total energy indicate the good agreement

between ELG-OPT and conventional calculations.

6 Conclusions and prospects

The geometry of the four model systems (linear poly-

hydrogen fluoride, polyethylene, planar polyacetylene and

polyalanine) is optimized using the ELG-HF-OPT proce-

dure. Compared to conventional calculations, it is obvious

that the overall agreement is very good: in terms of the

total energy differences, at worst about 10-7 Hartree/atom

order of magnitude, for bond length 10-3 Å and for bond

angles 0.2�.

The result of poly-hydrogen fluoride at 6-31G(d,p) basis

set is very promising. Despite of searching on the flat

energy potential surface, the total energy of the equilibrium

structure located by the ELG-HF-OPT is lower than the

corresponding conventional one with the same optimiza-

tion convergence threshold. The ELG-OPT method focuses

not only on the whole structure, but also on each elongation

geometry optimization step. It may search over more

possibilities for local minimum, which may produce a more

promising candidate for the most stable geometry. Actu-

ally, we also applied to some structures of DNA and pro-

teins and found such phenomenon that ELG-OPT method

could search more stable structure than those from conven-

tional direct optimization for entire system with the same

convergence criteria. It must be useful to search more opti-

mized structures toward global minimum in complicated

biosystems. We would report those data in the next step after

systematical and careful investigations are accomplished.

In this paper, we have examined the formalism of ELG-

HF-OPT method and its accuracy by model systems cal-

culations. At the same time, these calculations also predict

our future works. It is not only to set a rough threshold to

achieve an acceptable result, but also to introduce more

approximations to speed up current calculations. For

example, the possibility of employing point charges

approximation [59]. The elongation method, on the other

hand, is being developed to deal with more complicate

three-dimension real system. For details of the elongation

method and its applications, please refer to the perspective

report of [60]. Our final goal is to optimize the real and

complicate large system by the elongation geometry opti-

mization method.
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